Parity Bits and Hamming Code

The blog explains how to convert the program to hexadecimal using Parity Bits.

Converting the program to hexadecimal

The machine language program is shown in binary below, including the explanation of each step:
0000      1100      0001      0000      0000      0001      0000            ; Load 2 in A
0003      0110      0001      0000      0000      0001      0010            ; add -3 to A
0006      0110      0001      0000      0000      0001      0100            ; add 6 to A
0009      1110      0001      0000      0000      0001      0110            ; save result
000C      0011      1001      0000      0000      0001      0110            ; output result
000F      0000      0000                                                                         ; stop
0010      0000      0000      0000      0010                                           ; value 2
0012      1111      1111      1111      1101                                           ; value -3
0014      0000      0000      0000      0110                                           ; value 6
0016      0000      0000      0000      0000                                           ; result

Converting to hexadecimal

0000      C1      00      10
0003      61      00      12
0006      61      00      14
0009      E1      00      16
000C     39      00      16
000F     00
0010     00      02
0010     FF      FD
0010     00      06
0010     00      00

Finally, by removing the addresses we obtain the format that can be loaded into the Pep/9 simulator:

C1   00   10   61   00   12   61   00   14   E1   00   16   39   00   16   00   00   02   FF   FD   00   06   00   00

The result of loading and running the program is shown in the screenshot below:

Converting to hexadecimal
We start from the rightmost hexadecimal digit and we multiply each digit by the corresponding power of 16, starting from zero. Knowing that the letter digits in hexadecimal correspond to a= 10, b= 11,…, f = 15 we obtain:
0xabcdef12 =  2 * 160  +  1 * 161  + f * 162  +  e * 163  +  d * 164  +  c * 165  +  b * 166  +  a * 167
                      =  2 * 160  +  1 * 161  + 15 * 162 + 14 * 163  +  13 * 164  +  12 * 165  +  11 * 166  +  10 * 167
                      =  2 * 1  +  1 * 16  +  15 * 256  +  14 * 4096  +  13 * 65536  +  12 * 1048576  +  11 * 16777216 + 10 * 268435456 
                      =  2  +  16  +  3840  +  57344  +  851968  +  12582912  +  184549376  +  2684354560 
                      =  2882400018
Thus, 0xabcdef12 = 2882400018.
Since the message is 7 bits long we need at least 4 parity bits to cover it, thus the hamming code message will be 11 bits long.
We mark the bit positions, we put the data in the positions that are not powers of 2, the remaining are the parity bits:

1234567891011
__1_000_110

Parity in bit 1 corresponds to all odd positions so:
Parity1 = positions 3, 5, 7, 9, 11 = 1 0 0 1 0, since number of ones is even, parity1 is set to zero

1234567891011
0_1_000_110

Parity in bit 2 corresponds to all positions that have bit 2 set:
Parity2 = positions 3, 6, 7, 10, 11 = 1 0 0 1 0, since number of ones is even, parity2 is set to zero

1234567891011
001_000_110

Parity in bit 4 corresponds to all positions that have bit 4 set:
Parity4 = positions 5, 6, 7 = 0 0 0, since number of ones is even, parity4 is set to zero

1234567891011
0010000_110

Lastly, parity in bit 8 corresponds to all positions that have bit 8 set:
Parity8 = positions 9, 10, 11 = 1 1 0, since number of ones is even, parity8 is set to zero

1234567891011
00100000110

Thus the transmitted hamming code is: 00100000110
We write the number in binary as:
0x0C000000  =  0000  1100  0000  0000  0000  0000  0000  0000
Then we organize the binary bits as the fields of the floating point number, 1 bit sign, 8 bit exponent, 23 bits fraction:
0 00011000 00000000000000000000000
Thus:
                Sign = 0 -> + (positive)
                Exponent = 00011000 = 0x18 = 24
And:
                Fraction = 0
       Following the standard, the number is:
               Number = sign * 2^(exponent – 127) * ( 1.0 + fraction)
Then:
               Number = +2^(24 – 127) * (1.0 + 0)
               = +2^-103 * 1.0
Finally:
              Number = 9.860761315262648e-32