# Create Program to Solve Polynomial in Racket in Racket Assignment Solution.

## Instructions

Objective
Write a racket assignment program to create a BST tree.

## Requirements and Specifications

Write a recursive function that finds a zero of a polynomial using the false position method.
The function takes 3 parameters: The polynomial function and two starting values.
Test this function with the two following polynomials:
For the function 9x2 - 3x - 25, you can use starting values 0 and 4:
Which evaluate to -25 and 107 respectively
You can assume that the two starting x values evaluate to y values that are on opposite sides of the x axis. (i.e. one y value is positive, the other negative)
For the function y = 11x2 - 2x – 50, you can use starting values -5 and 1:
Which evaluate to 235 and -41 respectively
Print out the final x value.
```#lang racket ;myPolynomial subfunction (define (myPolynomial x)   (- (- (* 9 (* x x )) (* 3 x)) 25)   ) ;myOtherPolynomial subfunction (define (myOtherPolynomial x)   (- (- (* 11 (* x x )) (* 2 x)) 50)   ) ;xIntercept subfunction (define (xIntercept a fa b fb)   (/ (- (* a fb) (* b fa)) (- fb fa))   ) ; helper function to get the sign of the number: -1 = negative, 1 = positive, 0 = 0 (define (sign x)   (cond     [(> x 0) 1]     [(< x 0) -1]     [else 0]     )   ) ;recursive function (define (root-iter f a b acc)    (let* ([fa (f a)]           [fb (f b)]           [c (xIntercept a fa b fb)]           [fc (f c)])      (cond        [(< (abs fc) acc) c]        [(= (sign fa) (sign fc)) (root-iter f c b acc)]        [else (root-iter f a c acc)]        )      )   ) (display "Root of myPolinomial: ") (root-iter myPolynomial 0. 4. 0.00001) (newline) (display "Root of myOtherPolinomial: ") (root-iter myOtherPolynomial -3.0 0.0 0.00001) (newline) ```