×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Program To Check If A Magic Square Is Valid In ARM Assembly Language Using KEIL Assignment Solution

July 10, 2024
Rehana Magnus
Rehana Magnus
🇨🇦 Canada
Assembly Language
Rehana Magnus, PhD in Computer Science from the esteemed Acadia Institute of Technology, Canada. With 6 years of experience, specializes in assembly language programming. Proficient in low-level coding, optimizing performance, and enhancing system functionality.
Key Topics
  • Instructions
  • Requirements and Specifications
Tip of the day
Leverage Haskell's strong type system to catch errors early. Use tools like GHCi for interactive testing and debugging, which helps ensure your code is correct before final submission.
News
In 2024, universities worldwide are increasingly integrating AI-based coding tools into their programming courses, challenging students to adapt while relying more on external assignment help services. This shift has seen a rise in demand for expert programming assistance from international students studying abroad.

Instructions

Objective

Write an ARM assignment to check if a magic square is valid in ARM assembly language using KEIL.

Requirements and Specifications

Program to check if a magic square is valid in ARM assembly language using KEIL

Screenshots of output

Program to check if a magic square is valid in ARM assembly language using KEIL1
Program to check if a magic square is valid in ARM assembly language using KEIL2

Source Code

AREA magicSquares, CODE EXPORT __main ALIGN ENTRY __main PROC ; the code will initialize R1 and use a test matrix to run the code, ; if R1 is set somewhere else and a matrix is set at 0x20000010, ; then uncomment the following line ; B start MOV R1, #4 ; matrix size N ; copy test matrix to matrix space at 0x20000010 LDR R2, =tstmat1 ; start address of test matrix 1 ;LDR R2, =tstmat2 ; start address of test matrix 2 LDR R3, =0x20000010 ; start address of matrix MOV R4, R1 ; number of rows copyrows MOV R5, R1 ; number of cols copycols LDR R0, [R2], #4 ; load value from test matrix STR R0, [R3], #4 ; store value in matrix SUBS R5, R5, #1 ; decrement remaining cols BNE copycols ; repeat while not zero SUBS R4, R4, #1 ; decrement remaining rows BNE copyrows ; repeat while not zero start ; fill rows variable LDR R2, =0x20000010 ; load address of matrix LDR R3, =rows ; point to start of rows array LSL R4, R1, #2 ; size of a row = N*4 MOV R5, #0 ; start in position 0 loopr STR R2, [R3, R5, LSL #2]; save address in rows ADD R2, R2, R4 ; advance to next row ADD R5, R5, #1 ; increment index CMP R5, R1 ; compare index with N BLT loopr ; repeat while i < N ; fill cols variable LDR R2, =0x20000010 ; load address of matrix LDR R3, =cols ; point to start of cols array MOV R4, #0 ; start in position 0 loopc STR R2, [R3, R4, LSL #2]; save address in cols ADD R2, R2, #4 ; advance to next col ADD R4, R4, #1 ; increment index CMP R4, R1 ; compare index with N BLT loopc ; repeat while i < N ; calculate sum number = N*(N^2 + 1)/2 MUL R2, R1, R1 ; N*N ADD R3, R2, #1 ; N*N + 1 MUL R3, R3, R1 ; N*(N*N + 1) LSR R3, R3, #1 ; N*(N*N + 1)/2 MOV R8, #0 ; assume it's not magic at start ; First we test the matrix elements LDR R4, =rows ; load rows MOV R5, #0 ; row index loop1 LDR R6, [R4, R5, LSL #2] ; load row address MOV R7, #0 ; col index loop2 LDR R0, [R6, R7, LSL #2] ; load element from row CMP R0, #1 ; check if >= 1 BLT endTest ; if < 1, it's not a magic square CMP R0, R2 ; check if <= N^2 BGT endTest ; if > N^2, it's not a magic square ADD R7, R7, #1 ; increment col index CMP R7, R1 ; compare index with N BLT loop2 ; repeat while col < N ADD R5, R5, #1 ; increment row index CMP R5, R1 ; compare index with N BLT loop1 ; repeat while row < N ; We now test the row sums LDR R4, =rows ; load rows MOV R5, #0 ; row index sumrows1 LDR R6, [R4, R5, LSL #2] ; load row address MOV R7, #0 ; col index MOV R9, #0 ; start sum in zero sumcols1 LDR R0, [R6, R7, LSL #2] ; load element from row ADD R9, R9, R0 ; add element to sum ADD R7, R7, #1 ; increment col index CMP R7, R1 ; compare index with N BLT sumcols1 ; repeat while col < N CMP R9, R3 ; check if sum = N*(N*N + 1)/2 BNE endTest ; if != N^2, it's not a magic square ADD R5, R5, #1 ; increment row index CMP R5, R1 ; compare index with N BLT sumrows1 ; repeat while row < N ; We now test the column sums LDR R4, =cols ; load cols MOV R5, #0 ; col index sumcols2 LDR R6, [R4, R5, LSL #2] ; load col address MOV R7, #0 ; row index MOV R9, #0 ; start sum in zero sumrows2 MUL R0, R7, R1 ; row * num cols LSL R0, R0, #2 ; address of element = row * num cols * 4 LDR R0, [R6, R0] ; load element from col ADD R9, R9, R0 ; add element to sum ADD R7, R7, #1 ; increment row index CMP R7, R1 ; compare index with N BLT sumrows2 ; repeat while row < N CMP R9, R3 ; check if sum = N*(N*N + 1)/2 BNE endTest ; if != N^2, it's not a magic square ADD R5, R5, #1 ; increment col index CMP R5, R1 ; compare index with N BLT sumcols2 ; repeat while col < N ; We now test the first diagonal sum LDR R4, =rows ; load rows MOV R5, #0 ; row index MOV R6, #0 ; start sum in zero sumdiag1 LDR R7, [R4, R5, LSL #2] ; load row address LDR R0, [R7, R5, LSL #2] ; load element from row at index position (row,row) ADD R6, R6, R0 ; add element to sum ADD R5, R5, #1 ; increment row index CMP R5, R1 ; compare index with N BLT sumdiag1 ; repeat while row < N CMP R6, R3 ; check if sum = N*(N*N + 1)/2 BNE endTest ; if != N^2, it's not a magic square ; Lastly, we test the second diagonal sum LDR R4, =rows ; load rows SUB R5, R1, #1 ; row index = N-1 MOV R6, #0 ; col index = 0 MOV R7, #0 ; start sum in zero sumdiag2 LDR R9, [R4, R5, LSL #2] ; load row address LDR R0, [R9, R6, LSL #2] ; load element from row at index position (row,col) ADD R7, R7, R0 ; add element to sum SUB R5, R5, #1 ; decrement row index ADD R6, R6, #1 ; increment col index CMP R6, R1 ; compare col with N BLT sumdiag2 ; repeat while col < N CMP R7, R3 ; check if sum = N*(N*N + 1)/2 BNE endTest ; if != N^2, it's not a magic square MOV R8, #1 ; if we end all tests, matrix is a magic square endTest ; here, R8 will have 1 if the matrix is magic and 0 otherwise done B done ENDP ALIGN AREA myData1, DATA, READWRITE SPACE 16 ; leave 16 bytes (0x10) matrix SPACE 400 ; start of matrix at 0x20000010, at most 10x10 rows SPACE 40 ; space to save rows (at most 10) cols SPACE 40 ; space to save columns (at most 10) AREA myData2, DATA, READONLY tstmat1 DCD 16, 3, 2, 13 ; magic square matrix DCD 5, 10, 11, 8 DCD 9, 6, 7, 12 DCD 4, 15, 14, 1 tstmat2 DCD 5, 10, 11, 8 ; swapped 2 first rows, not magic DCD 16, 3, 2, 13 DCD 9, 6, 7, 12 DCD 4, 15, 14, 1 END

Related Samples

At ProgrammingHomeworkHelp.com, we offer a comprehensive collection of related samples for Assembly Language assignments, tailored to support students in mastering this intricate programming domain. Whether you're tackling basic concepts or advanced topics like microprocessor interfacing or assembly programming for embedded systems, our curated examples provide valuable insights and practical guidance. Trust our expertise to enhance your understanding and excel in your assignments with confidence.