×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Python Program to Create Data Visualization Assignment Solution

July 03, 2024
Eric G. Levine
Eric G.
🇺🇸 United States
Data Visualization
Eric J. Levine, PhD in Computer Science from an esteemed UK university, specializes in data visualization. With 8 years of experience, he excels in transforming complex data into insightful visual narratives for informed decision-making.
Key Topics
  • Instructions
    • Objective
  • Requirements and Specifications
Tip of the day
When working on machine learning assignments, always start by understanding your dataset thoroughly. Preprocessing, including handling missing data and feature scaling, is key to improving model accuracy. Make sure to test multiple algorithms to identify the best fit for your problem.
News
In 2024, the U.S. Department of Education launched a new tech plan aimed at boosting digital learning for programming students, focusing on equitable access and interactive tools to enhance creativity and engagement

Instructions

Objective

Write a python assignment program to create data visualization.

Requirements and Specifications

program-to-create-data-visualization-in-python
program-to-create-data-visualization-in-python 1

Source Code

import pandas as pd import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from datetime import datetime, timedelta # Read data data = pd.read_csv('AEP_hourly.csv') data['Datetime'] = [datetime.strptime(x, '%Y-%m-%d %H:%M:%S') for x in data['Datetime']] data.head() # Visualize Timeseries fig, ax = plt.subplots(figsize=(14,10)) data.plot(x='Datetime', y = 'AEP_MW',ax = ax) plt.grid(True) plt.show() # Let's define a Power Base so we conver the values to P.U $P_{p.u}=\frac{P(MW)}{S_{base}}$ Sbase = data['AEP_MW'].max() data['AEP_MW'] = data['AEP_MW']/Sbase data.head() # Create lag matrices We want a model that can predicts the value of Energy Consumption for a time step $t_{n+1}$ given the values at time-steps $t_{n}, t_{n-1}, t_{n-2},...,t_{n-p}$ where $p$ is thenumber of lags: $y_{t}=f(y(t_{n}),y(t_{n-1}),...,y(t_{n-p}))$ Assume that we have the following values: $Y = [1621.0, 1536.0, 1500.0, 1434.0, 1489.0, 1620.0]$ For $p=3$ the lag values are: $X_{1} = [1621.0, 1536.0, 1500.0]$ First three lags $X_{2} = [1536.0, 1500.0, 1434.0]$ First three lags $X_{3} = [1500.0, 1434.0, 1489.0]$ First three lags Note that, these values will be contained in the same matrix, not in different vectors. So for this case $X$ will be a matrix of size 3x3 y = data['AEP_MW'].tolist() lag = 48 # lag values X = [] Y = [] if len(y) - lag <= 0: X.append(y) else: for i in range(len(y)-lag): Y.append(y[i+lag]) X.append(y[i:(i+lag)]) X, Y = np.array(X), np.array(Y) X = np.reshape(X, (X.shape[0], X.shape[1], 1)) # Split data into Train and Test # Define the size of the train data train_size = 0.7 # 70% n_training = int(len(X)*train_size) X_train = X[:n_training] Y_train = Y[:n_training] X_test = X[n_training:] Y_test = Y[n_training:] print(f"There are {len(X_train)} samples for training and {len(X_test)} for testing") # Model with LSTM (This is only a test model, the real model for this project is in the next cell, so you can skip this cell) model = tf.keras.models.Sequential() model.add(tf.keras.layers.LSTM(50, activation = 'relu', input_shape = (lag, 1))) model.add(tf.keras.layers.Dense(1)) model.compile(optimizer='adam',loss='mse') model.fit(X_train, Y_train, batch_size = 256, epochs = 20, validation_data = (X_test, Y_test)) # Transformer Neural Network (Model with Transformer Encoder) The following cell contains two helper functions def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0): # Normalization x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(inputs) # Attention x = tf.keras.layers.MultiHeadAttention( key_dim=head_size, num_heads=num_heads, dropout=dropout )(x, x) # Dropout layer x = tf.keras.layers.Dropout(dropout)(x) res = x + inputs # Feed Forward Part x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(res) x = tf.keras.layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")(x) x = tf.keras.layers.Dropout(dropout)(x) x = tf.keras.layers.Conv1D(filters=inputs.shape[-1], kernel_size=1)(x) return x + res def build_model(input_shape,head_size,num_heads,ff_dim, num_transformer_blocks,mlp_units,dropout=0,mlp_dropout=0): inputs = tf.keras.Input(shape=input_shape) x = inputs # Add encoders for _ in range(num_transformer_blocks): x = transformer_encoder(x, head_size, num_heads, ff_dim, dropout) # Pooling x = tf.keras.layers.GlobalAveragePooling1D(data_format="channels_first")(x) # NN layers for dim in mlp_units: x = tf.keras.layers.Dense(dim, activation="relu")(x) x = tf.keras.layers.Dropout(mlp_dropout)(x) # Output layer outputs = tf.keras.layers.Dense(1)(x) return tf.keras.Model(inputs, outputs) input_shape = X_train.shape[1:] # Shape of data # Create model model = build_model( input_shape, head_size=256, num_heads=4, ff_dim=4, num_transformer_blocks=4, mlp_units=[128], mlp_dropout=0.4, dropout=0.25, ) # Compile model.compile( loss="mse", optimizer='adam', ) # Display summary model.summary() model.fit( X_train, Y_train, validation_data = (X_test, Y_test), epochs=20, batch_size=256 ) # Now, predict for the test dataset and plot Because there are so many samples in the test dataset, the graph will look cluttered. That is why only 500 points will be plotted: ypred = model.predict(X_test) # Constructing the forecast dataframe fc = data.tail(len(ypred)).copy() fc.reset_index(inplace=True) fc['forecast'] = ypred fc = fc.iloc[-500:,:] fig, ax = plt.subplots(figsize=(12,8)) fc.plot(x='Datetime', y='AEP_MW', ax = ax, label = 'Data') fc.plot(x='Datetime', y='forecast', ax = ax, style='r--', label = 'Forecast') plt.legend() plt.grid(True) plt.show() We see that the forecast is not bad but it could be better. It is recommended to increase the number of epochs to reduce the error # Predict N points ahead. Since this dataset is in hours, we will use N = 96 to predict the next 4 days N = 96 y = y[-lag:] X = [] Y = [] if len(y) - lag <= 0: X.append(y) else: for i in range(len(y)-lag): Y.append(y[i+lag]) X.append(y[i:(i+lag)]) X, Y = np.array(X), np.array(Y) X = np.reshape(X, (X.shape[0], X.shape[1], 1)) ypred = [] for _ in range(N): yp = model.predict(X) ypred.append(yp) X = np.append(X, yp) X = np.delete(X, 0) X = np.reshape(X, (1, len(X), 1)) ypred = [y[0][0] for y in ypred] # Constructing the forecast dataframe fc = data.tail(400).copy() fc['type'] = 'original' last_date = max(fc['Datetime']) hat_frame = pd.DataFrame({ 'Datetime': [last_date + timedelta(hours=x + 1) for x in range(N)], 'AEP_MW': ypred }) fig, ax = plt.subplots(figsize=(12,8)) fc.plot(x='Datetime', y = 'AEP_MW', ax = ax, label = 'Data') hat_frame.plot(x='Datetime', y = 'AEP_MW', ax = ax, color='r', label = 'Forecast') plt.legend() plt.grid(True) plt.show()

Similar Samples

Explore our comprehensive collection of programming homework samples across various disciplines including Java, Python, C++, Data Visualization, and more. Each sample showcases our expertise in solving diverse coding challenges with clarity and precision. Whether you need help with algorithms, software development, or data analysis projects, our samples demonstrate our commitment to delivering high-quality solutions tailored to your academic requirements.