×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Solutions to Questions Of Pattern Matching And Higher Order Functions In OCAML Assignment Solution

July 02, 2024
Liam Chen
Liam Chen
🇦🇺 Australia
Haskell
Liam Chen, a graduate of the University of Melbourne with a Bachelor's degree in Game Design, has extensive experience in creating dynamic game environments and character interactions. With over 750 assignments completed, Liam is known for his creative approach to game design and his proficiency in integrating interactive elements seamlessly.
Key Topics
  • Instructions
  • Requirements and Specifications
Tip of the day
Use Python libraries effectively by importing only what you need. For example, if you're working with data, using libraries like pandas and numpy can save time and simplify complex tasks like data manipulation and analysis.
News
In 2024, the Biden-Harris Administration has expanded high-dosage tutoring and extended learning programs to boost academic achievement, helping programming students and others recover from pandemic-related setbacks. These initiatives are funded by federal resources aimed at improving math and literacy skills​

Instructions

Objective
Write a program in Haskell to create and implement functions for manipulating trees.

Requirements and Specifications

Applying Functions to Trees Background Material
There are many possible variants of the type of binary trees introduced in the Lecture Notes.
Notice how now, the tree stores two different types of data: an element of type `a` at each fork and an element of type
`b` at each leaf.
Implementation Task
Your task is to write a haskell assignment higher-order function `applyfuns` that takes two functions `f :: a -> c` and `g :: b -> d`, as well as an element of type `Tree a b` as input and applies the first function to the values found at the forks, and the second function to the values found  at the leaves. That is, implement the function:
```haskell
applyfuns :: (a -> c) -> (b -> d) -> Tree a b -> Tree c d
applyfuns = undefined
```
Screenshots of output
functions for manipulating trees Haskell
functions for manipulating trees Haskell 1
functions for manipulating trees Haskell 2
functions for manipulating trees Haskell 3
Source Code
-- setting the "warn-incomplete-patterns" flag asks GHC to warn you
-- about possible missing cases in pattern-matching definitions
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}
-- see https://wiki.haskell.org/Safe_Haskell
{-# LANGUAGE Safe #-}
module Assessed2 (applyfuns , updateNodes , graft , elimImplications ,
                  isInCNF , toCNF , binToRose , roseToBin) where
import Types
---------------------------------------------------------------------------------
---------------- DO **NOT** MAKE ANY CHANGES ABOVE THIS LINE --------------------
---------------------------------------------------------------------------------
{- Exercise 1 -}
applyfuns :: (a -> c) -> (b -> d) -> Tree a b -> Tree c d
applyfuns _ fleaf (Leaf x) = Leaf (fleaf x) -- if leaf, apply second function
applyfuns ffork fleaf (Fork lt x rt) = -- if fork, apply first function and recurse
    Fork (applyfuns ffork fleaf lt) (ffork x) (applyfuns ffork fleaf rt)
{- Exercise 2 -}
updateNodes :: Route -> (a -> a) -> BinTree a -> BinTree a
updateNodes _ _ Empty = Empty -- if leaf, end
updateNodes [] f (Node lt x rt) = Node lt (f x) rt -- if empty route, apply to root and end
-- if left, apply to this node and recurse left
updateNodes (GoLeft:ts) f (Node lt x rt) = Node (updateNodes ts f lt) (f x) rt
-- if right, apply to this node and recurse right
updateNodes (GoRight:ts) f (Node lt x rt) = Node lt (f x) (updateNodes ts f rt)
{- Exercise 3 -}
graft :: Rose -> [ Rose ] -> (Rose , [ Rose ])
-- if leaf, append head of list, return grafted tree and tail
graft (Br []) (br:tl) = (br, tl)
graft (Br brlst) ls =
  let (nbrs, nlst) = graftList brlst ls in -- graft nodes in list
  (Br nbrs, nlst) -- return new tree with the grafted nodes and the resulting list
  where
    -- graft a list of nodes
    graftList [] gs = ([], gs) -- if we reached the end of list, return empty list and remaining
    graftList (hb:tb) gs = -- if the list has more elements
      let (rb, lb) = graft hb gs in -- process head, save the result
      let (rs, rl) = graftList tb lb in -- recurse to process rest of list, save result
      (rb:rs, rl) -- combine head result with tail list result, return it with the remaining list
{- Exercise 4 -}
elimImplications :: Expr -> Expr
elimImplications (Not p) = Not (elimImplications p)
elimImplications (Conj p q) = Conj (elimImplications p) (elimImplications q)
elimImplications (Disj p q) = Disj (elimImplications p) (elimImplications q)
-- replace p-> q by ~p v q
elimImplications (Implies p q) = Disj (Not (elimImplications p)) (elimImplications q)
elimImplications (Var s) = Var s
isInCNF :: Expr -> Bool
isInCNF expr
  | isClause expr = True -- is cnf if it's a clause
  | otherwise =
    case expr of
      (Conj p q) -> isInCNF p && isInCNF q -- it's cnf if it's a conjunction of cnf's
      _ -> False -- else, it's not a cnf
  where
      isClause (Var _) = True -- literal is a clause
      isClause (Not (Var _)) = True -- negation of literal is a clause
      isClause (Disj p q) = isClause p && isClause q -- Clause v Clause is a clause
      isClause _ = False -- anything else is not a clause
toCNF :: Expr -> Expr
toCNF e = simpDistrib (simpNegations (simpDeMorgan (simpNegations (elimImplications e))))
  where
    simpNegations (Not (Not p)) = p
    simpNegations (Conj p q) = Conj (simpNegations p) (simpNegations q)
    simpNegations (Disj p q) = Disj (simpNegations p) (simpNegations q)
    simpNegations x = x -- vars are not simplified
    simpDeMorgan (Not (Disj p q)) = Conj (Not (simpDeMorgan p)) (Not (simpDeMorgan q))
    simpDeMorgan (Not (Conj p q)) = Disj (Not (simpDeMorgan p)) (Not (simpDeMorgan q))
    simpDeMorgan (Not p) = Not (simpDeMorgan p)
    simpDeMorgan (Disj p q) = Disj (simpDeMorgan p) (simpDeMorgan q)
    simpDeMorgan (Conj p q) = Conj (simpDeMorgan p) (simpDeMorgan q)
    simpDeMorgan x = x
    simpDistrib (Disj p (Conj q r)) = let simpp = simpDistrib p in
      Conj (Disj simpp (simpDistrib q)) (Disj simpp (simpDistrib r))
    simpDistrib (Disj (Conj p q) r) = let simpr = simpDistrib r in
      Conj (Disj (simpDistrib p) simpr) (Disj (simpDistrib q) simpr)
    simpDistrib (Not p) = Not (simpDistrib p)
    simpDistrib (Disj p q) = Disj (simpDistrib p) (simpDistrib q)
    simpDistrib (Conj p q) = Conj (simpDistrib p) (simpDistrib q)
    simpDistrib x = x
{- Exercise 5 -}
binToRose :: Bin -> Rose
binToRose Root = Br [] -- leaf is an empty rose
-- use helper to fill rose tree if root doesn't have left
binToRose (Branch Root r) = Br (binToRosePar r [])
  where
    -- par is the current parent list of nodes
    binToRosePar Root par = par -- if we reached a leaf, return the list of parent nodes
    binToRosePar (Branch l r) par =
      let narch = binToRosePar r [] in -- convert right child
      let parch = binToRosePar l par in -- convert left child
      -- add current node using converted right child as its list of nodes,
      -- to the parent nodes after left child has been added
      (Br narch):parch
-- else, convert directly to binary rose
binToRose (Branch l r) = binToRoseB (Branch l r)
  where
    binToRoseB Root = Br []
    binToRoseB (Branch l r) = Br [binToRoseB l, binToRoseB r]
roseToBin :: Rose -> Bin
roseToBin root
  | isBin root = roseToBinB root -- if is a binart, convert directly
  | otherwise = roseToBinSib [root] -- process as a node without siblings
  where
    roseToBinSib [] = Root -- if no more siblings, is a leaf
    -- if there is a node, create branch, add siblings to the left and
    -- children of this node to the right
    roseToBinSib ((Br chs):ss) = Branch (roseToBinSib ss) (roseToBinSib chs)
    roseToBinB (Br []) = Root
    roseToBinB (Br [l,r]) = Branch (roseToBinB l) (roseToBinB r)
    roseToBinB _ = Root
    isBin (Br []) = True
    isBin (Br [_]) = False
    isBin (Br (l:r:[])) = isBin l && isBin r
    isBin (Br _) = False

Related Samples

Discover our Haskell Assignment Samples for precise solutions to functional programming challenges. Covering monads, recursion, and type inference, these examples provide clear explanations and practical implementations. Perfect for students aiming to deepen their Haskell skills and excel academically with structured, educational content tailored to programming assignments.