×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Python Program to Implement Quality Control Assignment Solution

June 22, 2024
Dr. Matthew Hernandez
Dr. Matthew
🇨🇭 Switzerland
Python
Dr. Matthew Hernandez, an esteemed Computer Science researcher, obtained his PhD from ETH Zurich, Switzerland. With 6 years of experience under his belt, he has successfully completed over 400 Python assignments, demonstrating his proficiency and commitment to excellence.
Key Topics
  • Instructions
    • Objective
  • Requirements and Specifications
Tip of the day
When working on machine learning assignments, always start by understanding your dataset thoroughly. Preprocessing, including handling missing data and feature scaling, is key to improving model accuracy. Make sure to test multiple algorithms to identify the best fit for your problem.
News
In 2024, the U.S. Department of Education launched a new tech plan aimed at boosting digital learning for programming students, focusing on equitable access and interactive tools to enhance creativity and engagement

Instructions

Objective

Write a python assignment program to implement quality control.

Requirements and Specifications

program-to-implement-quality-control-in-python

Source Code

import pandas as pd import matplotlib.pyplot as plt import numpy as np # Define function to display main menu and ask for option def menu(): while True: try : print("Please choose from the following options:") print("\t1 - Load data from a file") print("\t2 - View data") print("\t3 - Clean data") print("\t4 - Analyse data") print("\t5 - Visualise data") print("\t6 - Save data to a file") print("\t7 - Quit") option = int(input()) if option >= 1 and option <= 7: return option else: print("Please enter a valid option.") except: print("Please enter a valid menu option") # Define a function to display the menu for the 'Clean Data' option def cleandata_menu(): while True: try : print("Cleaning data:") print("\t1 - Drop rows with missing values") print("\t2 - Fill missing values") print("\t3 - Drop duplicate rows") print("\t4 - Drop column") print("\t5 - Rename column") print("\t6 - Finish cleaning") option = int(input()) if option >= 1 and option <= 6: return option else: print("Please enter a valid option.") except: print("Please enter a valid menu option") # Define a function to get an integer from user. The integer must be between [lb, ub] def get_int(message, lb, ub): """ Requests an integer input 'n' such that lb <= n <= ub """ while True: try : option = int(input(message)) if option >= lb and option <= ub: return option else: print(f"Please enter a value between {lb} and {ub}.") except: print("Please enter a valid integer.") # Main code current_data = None # Variable to store the current loaded data running = True while running: option = menu() if option == 1: # Ask for file name file_name = input("Enter file name: ") try: data = pd.read_csv(file_name) current_data = data print(f" File {file_name} correctly loaded!") # Ask if s/he wants to set a column name as index while True: col_name = input("Enter column name to be set as index: ") if len(col_name) > 0: if col_name in current_data.columns: current_data = current_data.set_index(col_name) current_data = current_data.drop(columns=[col_name]) break else: print("Sorry, the data does not contain a column with that name.") else: break except: print("File does not exist or could not be loaded.") elif option == 2: # Print if current_data: print(current_data) else: print("No data loaded.") elif option == 3: if current_data: while True: opt = cleandata_menu() if opt == 1: # drop rows with missing values # Ask for threshold treshold = get_int("Enter the treshold for dropping rows: ", 1, np.inf) current_data = current_data[current_data.isnull().sum(axis = 1) < treshold] elif opt == 2: # fill missing values replacement = get_int("Enter the replacement value", -np.inf, np.inf) current_data.fillna(replacement) elif opt == 3: # Drop duplicate rows # Get current amount of rowas n_current = len(current_data) current_data.drop_duplicates() n_new = len(current_data) print(f"{n_current-n_new} rows dropped.") elif opt == 4: # drop dolumn # Ask name of column print("Which column do you want to drop? (leave blank for none)") for c in current_data.columns: print(f"\t{c}") column = input() if len(column) > 0: if column in current_data.columns: current_data = current_data.drop(columns = [column]) print(f"{column} dropped.") else: print("Invalid selection!") else: print("No column dropped.") elif opt == 5: # Rename column print("Which column do you want to rename? (leave blank for none)") for c in current_data.columns: print(f"\t{c}") column = input() if len(column) > 0: if column in current_data.columns: # Ask for new name new_column = input("Enter the new name: ") current_data.rename(columns={column:new_column}) print(f"{column} renamed to {new_column}.") else: print("Invalid selection!") else: print("No column renamed.") elif opt == 6: # finish cleaning break print(current_data) else: print("No data loaded.") elif option == 4: # Analyse data if current_data: for c in current_data.columns: print(c) print('-'*len(c)) print("{:<15s}:{:>5d}".format("number of values (n)", current_data[c].count())) print("{:<15s}:{:>5.2f}".format("minimum", current_data[c].min())) print("{:<15s}:{:>5.2f}".format("maximum", current_data[c].max())) print("{:<15s}:{:>5.2f}".format("mean", current_data[c].mean())) print("{:<15s}:{:>5.2f}".format("median", current_data[c].median())) print("{:<15s}:{:>5.2f}".format("standard deviation", current_data[c].std())) print("{:<15s}:{:>5.2f}".format("std. err. of mean", current_data[c].sem())) # Display correlation table print(current_data.corr()) else: print("No data loaded.") elif option == 5: # Visualize if current_data: while True: # Ask for plot type print("Please choose from the following kinds: line, bar, box") plot_type = input() if plot_type.lower() in ['line', 'bar', 'box']: print("Do you want subplots? (y/n)") yn = input() if yn.lower() in ['y', 'n']: plot_title = input("Please enter the title for the plot (leave blank for no title)\n") x_label = input("Please enter the x-axis label (leave blank for no label).\n") y_label = input("Please enter the y-axis label (leave balnk for no label).\n") if yn == 'y': # subplots n_columns = len(current_data.columns) if plot_type != 'box': fig, axes = plt.subplots(nrows = n_columns, ncols = 1) for i, c in enumerate(current_data.columns): if plot_type == 'line': current_data.plot(y=c, use_index = True, ax = axes[i]) elif plot_type == 'bar': current_data.plot.bar(y=c, use_index = True, ax = axes[i]) axes[i].set_title(plot_title) axes[i].set_xlabel(x_label) axes[i].set_ylabel(y_label) plt.show() break else: plt.figure() current_data.boxplot() plt.title(plot_title) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() break else: n_columns = len(current_data.columns) if plot_type != 'box': for i, c in enumerate(current_data.columns): plt.figure() current_data.plot(y=c, use_index = True) plt.title(plot_title) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() break else: plt.figure() current_data.boxplot() plt.title(plot_title) plt.xlabel(x_label) plt.ylabel(y_label) plt.show() break else: print("Invalid selection!") else: print("Invalid selection!") else: print("No data loaded.") elif option == 6: #Save to a file if current_data: file_name = input("Enter the filename, including extension: ") try: current_data.to_csv(file_name,sep=',') except: print(f"Data could not be saved to {file_name}") else: print("No data loaded.") elif option == 7: running = False print("Goodbye")

Similar Samples

Explore our curated collection of programming homework samples at ProgrammingHomeworkHelp.com. Our examples, spanning Java, Python, C++, and more, demonstrate our expertise in tackling various coding challenges. Each solution showcases clarity, thoroughness, and adherence to academic standards. Dive into our samples to experience how we can assist you in mastering programming concepts effectively.