×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Program To Implement Undirected Graph in Java Assignment Solution

July 01, 2024
Ellie Icely
Ellie Icely
🇬🇧 United Kingdom
Java
PhD in Computer Science from the University of Hertfordshire, with 8 years of experience in Java assignments. Expert in delivering high-quality, efficient solutions for complex programming problems. Passionate about teaching and mentoring students.
Key Topics
  • Instructions
  • Requirements and Specifications
Tip of the day
Understand Java’s object-oriented principles thoroughly, especially inheritance and polymorphism. These concepts are key to structuring efficient and scalable code, which will improve your ability to tackle complex assignments with better design and organization.
News
In 2024, universities worldwide are updating programming curricula to include AI and machine learning, challenging students to adapt to rapidly evolving tech skills.

Instructions

Objective

To complete a Java assignment, you need to write a program that implements an undirected graph in the Java language. An undirected graph consists of a set of vertices connected by edges, where the edges have no direction. In the program, you should define classes to represent vertices and edges, along with methods to add vertices, create edges between them, and perform other graph-related operations like traversals or finding paths. Utilize data structures like arrays or linked lists to manage the graph's connectivity efficiently. Make sure to implement the necessary algorithms and error handling to ensure the program runs smoothly and produces correct results.

Requirements and Specifications

Program to implement undirected graph in java

Source Code

import java.util.*; public class Graph { public int noOfVertices = - 1; public int[][] edges = null; public int[][] weights = null; // Creates a new empty graph. public Graph() { } public Graph(int[][] data, boolean weighted) { if (weighted) initWeighted(data); else initUnweighted(data); } private void initWeighted(int[][] data) { // Structure of data // ------------------ // length: 2 times number of vertices // 2i: neighbours of vertex i. // 2i + 1: weight of edges from vertex i to corresponding neighbour. noOfVertices = data.length / 2; edges = new int[noOfVertices][]; weights = new int[noOfVertices][]; for (int i = 0; i < noOfVertices; i++) { int dataInd = 2 * i; int deg = data[dataInd].length; edges[i] = new int[deg]; weights[i] = new int[deg]; for (int j = 0; j < deg; j++) { edges[i][j] = data[dataInd][j]; weights[i][j] = data[dataInd + 1][j]; } } } private void initUnweighted(int[][] data) { noOfVertices = data.length; edges = new int[noOfVertices][]; for (int i = 0; i < noOfVertices; i++) { edges[i] = data[i].clone(); } } /** * Relexas an edge of the graph based on the given distances. * @param vInd The vertex from which the edge starts. * @param neighInd The index of the vertex in the neighbourhood of v to * which the edge points. That is, the edge goes from vId * to edges[vId][neighInd]. */ public boolean relax(int vInd, int neighInd, int[] distances) { int uInd = edges[vInd][neighInd]; int uDis = distances[uInd]; int vDis = distances[vInd]; int vuWeight = weights[vInd][neighInd]; boolean update = false; // Avoid problems with overflow. if (vuWeight > 0) { update = vDis < uDis - vuWeight; } else { update = vDis + vuWeight < uDis; } if (update) { distances[uInd] = vDis + vuWeight; return true; } return false; } public int[][] dfs(int startId) { // Output data int[] parIds = new int[noOfVertices]; int[] preOrder = new int[noOfVertices]; int[] postOrder = new int[noOfVertices]; int preCount = 0; int postCount = 0; // Helpers to compute DFS int[] neighIndex = new int[noOfVertices]; int[] stack = new int[noOfVertices]; int stackSize = 0; boolean[] visited = new boolean[noOfVertices]; for (int vId = 0; vId < noOfVertices; vId++) { parIds[vId] = -1; preOrder[vId] = -1; postOrder[vId] = -1; visited[vId] = false; neighIndex[vId] = 0; } // Push stack[stackSize] = startId; stackSize++; while (stackSize > 0) { int vId = stack[stackSize - 1]; int nInd = neighIndex[vId]; if (nInd == 0) { visited[vId] = true; // *** Pre-order for vId *** preOrder[preCount] = vId; preCount++; } if (nInd < edges[vId].length) { int neighId = edges[vId][nInd]; if (!visited[neighId]) { // Push stack[stackSize] = neighId; stackSize++; parIds[neighId] = vId; } neighIndex[vId]++; } else { // All neighbours checked, backtrack. stackSize--; // Pop; // *** Post-order for vId *** postOrder[postCount] = vId; postCount++; } } return new int[][] { parIds, preOrder, postOrder }; } public int[][] bfs(int startId) { // Output data // 0: distances from start vertex // 1: BFS-order // 2: parent-IDs int[][] bfsResult = new int[3][noOfVertices]; int[] distances = bfsResult[0]; int[] q = bfsResult[1]; int[] parents = bfsResult[2]; for (int i = 0; i < noOfVertices; i++) { distances[i] = Integer.MAX_VALUE; q[i] = -1; parents[i] = -1; } // Set start vertex distances[startId] = 0; q[0] = startId; int qSize = 1; for (int qInd = 0; qInd < qSize; qInd++) { int vInd = q[qInd]; int nDis = distances[vInd] + 1; for (int nInd = 0; nInd < edges[vInd].length; nInd++) { int uInd = edges[vInd][nInd]; if (nDis < distances[uInd]) { distances[uInd] = nDis; parents[uInd] = vInd; q[qSize] = uInd; qSize++; } } } return bfsResult; } public int[] bellmanFord(int startId) { int[] distances = new int[noOfVertices]; Arrays.fill(distances, Integer.MAX_VALUE); distances[startId] = 0; HashSet updatedLast = new HashSet(); HashSet updateNext = new HashSet(); updatedLast.add(startId); while (updatedLast.size() > 0) { for (int vId : updatedLast) { for (int i = 0; i < edges[vId].length; i++) { if (relax(vId, i, distances)) { updateNext.add(edges[vId][i]); } } } updatedLast.clear(); HashSet tmp = updatedLast; updatedLast = updateNext; updateNext = tmp; } return distances; } }

Similar Samples

At ProgrammingHomeworkHelp.com, explore a wide range of expertly crafted programming solutions. Our sample section showcases real-world examples and detailed explanations, helping you understand complex concepts with ease. Perfect for students seeking clarity and assistance in their programming assignments.